Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
Parasite ; 31: 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450717

RESUMO

African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2-26.5) in 2009 to 0% in 2017-2022 in block 1, and from 92.9% (95%CI: 88.2-97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis.


Title: Trypanosomose animale éliminée dans une importante région de production d'élevage au Sénégal suite à l'éradication d'une population de glossines. Abstract: La trypanosomose animale africaine (TAA) était l'une des principales contraintes pathologiques au développement de systèmes de production animale intensifs dans les Niayes du Sénégal, une bande de terre large de 30 km longeant la côte entre Dakar et Saint-Louis. Pour surmonter cette contrainte, le Gouvernement du Sénégal a lancé un programme de lutte intégrée à l'échelle de la zone combinant lutte chimique et technique de l'insecte stérile pour éradiquer une population de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae). Le projet a été mis en œuvre selon une approche conditionnelle progressive, et la zone cible a été divisée en trois blocs, traités de manière séquentielle. L'objectif de cette étude était d'évaluer la dynamique temporelle de la prévalence de Trypanosoma spp. au cours de la mise en œuvre du programme. Entre 2009 et 2022, 4 359 échantillons de sang ont été prélevés sur des bovins et ont fait l'objet d'un dépistage des trypanosomes à l'aide des techniques du buffy-coat et ELISA, ainsi que de test PCR depuis 2020. Dans le bloc 1, la séroprévalence est passée de 18,9 % (IC 95 % : 11,2­26,5) en 2009 à 0 % entre 2017­2022 et de 92,9 % (IC 95 % : 88,2-97) en 2010 à 0 % en 2021 pour le block 2. Les données parasitologiques et sérologiques confirment les résultats du suivi entomologique selon lesquels il est très probable que la population de Glossina palpalis gambiensis soit éradiquée des Niayes, et que la transmission de la TAA a été interrompue dans la zone traitée. Elles indiquent l'efficacité de l'approche adoptée, et montrent que la TAA peut être durablement éliminée grâce à la création d'une zone exempte de G. p. gambiensis.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase , Animais , Bovinos , Gado , Senegal/epidemiologia , Estudos Soroepidemiológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária
2.
Res Vet Sci ; 171: 105227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513458

RESUMO

African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase Bovina , Tripanossomíase , Moscas Tsé-Tsé , Bovinos , Animais , Estudos Transversais , Etiópia/epidemiologia , Moscas Tsé-Tsé/parasitologia , Insetos Vetores , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/parasitologia , Tripanossomíase/veterinária , Prevalência , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Doenças dos Bovinos/epidemiologia
3.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38426744

RESUMO

Trypanosomosis is a disease complex which affects both humans and animals in sub-Saharan Africa, transmitted by the tsetse fly and distributed within the tsetse belt of Africa. But some trypanosome species, for example, Trypanosoma brucei evansi, T. vivax, T. theileri and T. b. equiperdum are endemic outside the tsetse belt of Africa transmitted by biting flies, for example, Tabanus and Stomoxys, or venereal transmission, respectively. Trypanocidal drugs remain the principal method of animal trypanosomosis control in most African countries. However, there is a growing concern that their effectiveness may be severely curtailed by widespread drug resistance. A minimum number of six male cattle calves were recruited for the study. They were randomly grouped into two (T. vivax and T. congolense groups) of three calves each. One calf per group served as a control while two calves were treatment group. They were inoculated with 105 cells/mL parasites in phosphate buffered solution (PBS) in 2 mL. When parasitaemia reached 1 × 107.8 cells/mL trypanosomes per mL in calves, treatment was instituted with 20 mL (25 mg/kg in 100 kg calf) ascofuranone (AF) for treatment calves, while the control ones were administered a placebo (20 mL PBS) intramuscularly. This study revealed that T. vivax was successfully cleared by AF but the T. congolense group was not cleared effectively.Contribution: There is an urgent need to develop new drugs which this study sought to address. It is suggested that the AF compound can be developed further to be a sanative drug for T. vivax in non-tsetse infested areas like South Americas.


Assuntos
Sesquiterpenos , Tripanossomicidas , Tripanossomíase Africana , Animais , Bovinos , Masculino , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/parasitologia
4.
Exp Parasitol ; 259: 108711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355002

RESUMO

Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Nitrofurantoína/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Mamíferos
5.
Sci Rep ; 14(1): 4158, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378867

RESUMO

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Humanos , Bovinos , Animais , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Trypanosoma/genética , DNA , Fezes
6.
BMC Vet Res ; 20(1): 32, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279149

RESUMO

BACKGROUND: Animal trypanosomiasis is a major livestock problem due to its socioeconomic impacts in tropical countries. Currently used trypanocides are toxic, expensive, and the parasites have developed resistance to the existing drugs, which calls for an urgent need of new effective and safe chemotherapeutic agents from alternative sources such as medicinal plants. In Ethiopian traditional medicine fresh leaves of Ranunculus multifidus Forsk, are used for the treatment of animal trypanosomiasis. The present study aimed to evaluate the antitrypanosomal activity of the fresh leaves of R. multifidus and its major compound anemonin against Trypanosoma congolense field isolate. METHODS: Fresh leaves of R. multifidus were extracted by maceration with 80% methanol and hydro-distillation to obtain the corresponding extracts. Anemonin was isolated from the hydro-distilled extract by preparative TLC. For the in vitro assay, 0.1, 0.4, 2 and 4 mg/ml of the test substances were incubated with parasites and cessation or drop in motility of the parasites was monitored for a total duration of 1 h. In the in vivo assay, the test substances were administered intraperitoneally daily for 7 days to mice infected with Trypanosoma congolense. Diminazene aceturate and 1% dimethylsulfoxide (DMSO) were used as positive and negative controls, respectively. RESULTS: Both extracts showed antitrypanosomal activity although the hydro-distilled extract demonstrated superior activity compared to the hydroalcoholic extract. At a concentration of 4 mg/ml, the hydro-distilled extract drastically reduced motility of trypanosomes within 20 min. Similarly, anemonin at the same concentration completely immobilized trypanosomes within 5 min of incubation, while diminazene aceturate (28.00 mg/kg/day) immobilized the parasites within 10 min. In the in vivo antitrypanosomal assay, anemonin eliminates parasites at all the tested doses (8.75, 17.00 and 35.00 mg/kg/day) and prevented relapse, while in diminazene aceturate-treated mice the parasites reappeared on days 12 to 14. CONCLUSIONS: The current study demonstrated that the fresh leaves of R. multifidus possess genuine antitrypanosomal activity supporting the use of the plant for the treatment of animal trypanosomiasis in traditional medicine. Furthermore, anemonin appears to be responsible for the activity suggesting its potential as a scaffold for the development of safe and cost effective antitrypanosomal agent.


Assuntos
Furanos , Ranunculus , Tripanossomicidas , Tripanossomíase Africana , Animais , Camundongos , Diminazena/farmacologia , Diminazena/uso terapêutico , Músculos Paraespinais , Extratos Vegetais/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma congolense , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária
7.
Parasit Vectors ; 17(1): 4, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178172

RESUMO

BACKGROUND: In tropical Africa animal trypanosomiasis is a disease that has severe impacts on the health and productivity of livestock in tsetse fly-infested regions. Trypanosoma congolense savannah (TCS) is one of the main causative agents and is widely distributed across the sub-Saharan tsetse belt. Population genetics analysis has shown that TCS is genetically heterogeneous and there is evidence for genetic exchange, but to date Trypanosoma brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, with meiosis and production of haploid gametes. In T. brucei sex occurs in the fly salivary glands, so by analogy, sex in TCS should occur in the proboscis, where the corresponding portion of the developmental cycle takes place. Here we test this prediction using genetically modified red and green fluorescent clones of TCS. METHODS: Three fly-transmissible strains of TCS were transfected with genes for red or green fluorescent protein, linked to a gene for resistance to the antibiotic hygromycin, and experimental crosses were set up by co-transmitting red and green fluorescent lines in different combinations via tsetse flies, Glossina pallidipes. To test whether sex occurred in vitro, co-cultures of attached epimastigotes of one red and one green fluorescent TCS strain were set up and sampled at intervals for 28 days. RESULTS: All interclonal crosses of genetically modified trypanosomes produced hybrids containing both red and green fluorescent proteins, but yellow fluorescent hybrids were only present among trypanosomes from the fly proboscis, not from the midgut or proventriculus. It was not possible to identify the precise life cycle stage that undergoes mating, but it is probably attached epimastigotes in the food canal of the proboscis. Yellow hybrids were seen as early as 14 days post-infection. One intraclonal cross in tsetse and in vitro co-cultures of epimastigotes also produced yellow hybrids in small numbers. The hybrid nature of the yellow fluorescent trypanosomes observed was not confirmed by genetic analysis. CONCLUSIONS: Despite absence of genetic characterisation of hybrid trypanosomes, the fact that these were produced only in the proboscis and in several independent crosses suggests that they are products of mating rather than cell fusion. The three-way strain compatibility observed is similar to that demonstrated previously for T. brucei, indicating that a simple two mating type system does not apply for either trypanosome species.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/genética , Trypanosoma congolense/genética , Gado , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Meiose , Trato Gastrointestinal , Cruzamentos Genéticos
8.
Eur J Pharm Sci ; 192: 106668, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065268

RESUMO

African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.


Assuntos
Tripanossomíase Africana , Tripanossomíase , Humanos , Animais , Bovinos , Camundongos , Nitrofurantoína , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Tripanossomíase/tratamento farmacológico , Tripanossomíase/veterinária , Resultado do Tratamento , Etilenoglicóis/uso terapêutico
9.
Sci Rep ; 13(1): 20337, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37990067

RESUMO

African animal trypanosomiasis (AAT) is one of the major constraints to animal health and production in sub-Saharan Africa. To inform AAT control in Uganda and help advance along the progressive control pathway (PCP), we characterized AAT prevalence among eight host species in Uganda and explored factors that influence the prevalence variation between studies. We retrieved AAT prevalence publications (n = 2232) for Uganda (1980-2022) from five life sciences databases, focusing on studies specifying AAT detection methods, sample size, and the number of trypanosome-positive animals. Following PRISMA guidelines, we included 56 publications, and evaluated publication bias by the Luis Furuya-Kanamori (LFK) index. National AAT prevalence under DNA diagnostic methods for cattle, sheep and goats was 22.15%, 8.51% and 13.88%, respectively. Under DNA diagnostic methods, T. vivax was the most common Trypanosoma sp. in cattle (6.15%, 95% CI: 2.91-10.45) while T. brucei was most common among small ruminants (goats: 8.78%, 95% CI: 1.90-19.88, and sheep: 8.23%, 95% CI: 4.74-12.50, respectively). Northern and Eastern regions accounted for the highest AAT prevalence. Despite the limitations of this study (i.e., quality of reviewed studies, underrepresentation of districts/regions), we provide insights that could be used for better control of AAT in Uganda and identify knowledge gaps that need to be addressed to support the progressive control of AAT at country level and other regional endemic countries with similar AAT eco-epidemiology.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Ovinos , Animais Domésticos , Gado , Prevalência , Uganda/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Trypanosoma/genética , Ruminantes , Cabras , DNA
10.
PLoS Negl Trop Dis ; 17(11): e0011730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943881

RESUMO

Animal African trypanosomosis is an important vector-borne disease of livestock in sub-Saharan Africa. Pigs seem relatively tolerant to trypanosome infection and could act as a reservoir of trypanosomes affecting animals and humans. Our ability to reliably detect trypanosome infection in pigs depends on the performance of diagnostic tools, which is not well known. In pigs experimentally infected with Trypanosoma brucei brucei, we evaluated the performance of parasitological Buffy Coat Technique (BCT), two molecular (TBR and 5.8S PCR) and four serological tests (CATT, HAT Sero-K-Set rapid diagnostic test-RDT, indirect ELISA, immune trypanolysis). Most diagnostic tests showed high specificity, estimated at 100% (95% CI = 74-100%) with the exception of CATT and RDT whose specificity varied between 100% (95% CI = 74-100%) to 50% (95% CI = 7-93%) during the experiment. The sensitivity of each test fluctuated over the course of the infection. The percentage of positive BCT over the infection (30%) was lower than of positive PCR (56% and 62%, depending on primers). Among the serological tests, the percentage of positive tests was 97%, 96%, 86% and 84% for RDT, ELISA, immune trypanolysis and CATT, respectively. Fair agreement was observed between both molecular tests (κ = 0.36). Among the serological tests, the agreement between the ELISA and the RDT was substantial (κ = 0.65). Our results on the T.b. brucei infection model suggest that serological techniques are efficient in detecting the chronic phase of infection, PCR is able to detect positive samples several months after parasites inoculation while BCT becomes negative. BCT examination and RDT are useful to get a quick information in the field, and BCT can be used for treatment decision. ELISA appears most suited for epidemiological studies. The selection of diagnostic tests for trypanosomosis in pigs depends on the context, the objectives and the available resources.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Humanos , Animais , Suínos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Gado , Testes Diagnósticos de Rotina , Sensibilidade e Especificidade
11.
Parasite ; 30: 36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37728508

RESUMO

African trypanosomoses, whose pathogens are transmitted by tsetse flies, are a threat to animal and human health. Tsetse flies observed at the military base of the French Forces in Côte d'Ivoire (FFCI base) were probably involved in the infection and death of military working dogs. Entomological and parasitological surveys were carried out during the rainy and dry seasons using "Vavoua" traps to identify tsetse fly species, their distribution, favorable biotopes and food sources, as well as the trypanosomes they harbor. A total of 1185 Glossina palpalis palpalis tsetse flies were caught, corresponding to a high average apparent density of 2.26 tsetse/trap/day. The results showed a heterogeneous distribution of tsetse at the FFCI base, linked to more or less favorable biotopes. No significant variation in tsetse densities was observed according to the season. The overall trypanosomes infection rate according to microscopic observation was 13.5%. Polymerase chain reaction (PCR) analyses confirmed the presence of Trypanosoma vivax and T. congolense forest type, responsible for African animal trypanosomosis. Our findings suggest that there is a risk of introduction and transmission of T. brucei gambiense, responsible for human African trypanosomiasis, on the study site. This risk of transmission of African trypanosomes concerns not only the FFCI base, but also inhabited peripheral areas. Our study confirmed the need for vector control adapted to the eco-epidemiological context of the FFCI base.


Title: Écologie des mouches tsé-tsé et risque de transmission des trypanosomes africains lié à une zone forestière protégée dans une base militaire de la ville d'Abidjan, Côte d'Ivoire. Abstract: Les trypanosomoses africaines, dont les agents pathogènes sont transmis par les mouches tsé-tsé, constituent une contrainte pour la santé animale et humaine. Des mouches tsé-tsé observées dans la base militaire des Forces françaises en Côte d'Ivoire (base FFCI) ont probablement été impliquées dans l'infection et la mort de chiens militaires. Des enquêtes entomologiques et parasitologiques ont été menées pendant la saison pluvieuse et la saison sèche à l'aide de pièges "Vavoua" afin d'identifier les espèces de mouches tsé-tsé, leur distribution, les biotopes favorables et leur source de nourriture ainsi que les trypanosomes qu'elles hébergent. Au total 1185 mouches tsé-tsé de l'espèce Glossina palpalis palpalis ont été capturées, ce qui correspond à une densité apparente moyenne élevée de 2,26 tsé-tsé/piège/jour. Les résultats ont montré une distribution hétérogène des tsé-tsé dans la base FFCI en lien avec des biotopes plus ou moins favorables. Aucune variation significative des densités de tsé-tsé n'a été observée en fonction de la saison. Le taux d'infection global par les trypanosomes était de 13,5 % selon l'observation microscopique. Les analyses PCR ont confirmé la présence de Trypanosoma vivax et T. congolense type forêt, responsable de la trypanosomose animale africaine. Nos résultats suggèrent qu'il existe un risque potentiel d'introduction et de transmission de T. brucei gambiense responsable de la trypanosomiase humaine africaine dans la zone d'étude. Ce risque de transmission des trypanosomes africains concerne non seulement l'intérieur de la base FFCI, mais aussi les espaces périphériques habités. Notre étude a confirmé la nécessité de mener une lutte antivectorielle adaptée au contexte éco-épidémiologique de la base FFCI.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Cães , Humanos , Côte d'Ivoire/epidemiologia , Instalações Militares , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Florestas
12.
Parasit Vectors ; 16(1): 231, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434196

RESUMO

BACKGROUND: Tsetse-transmitted African animal trypanosomiasis is recognised as an important disease of ruminant livestock in sub-Saharan Africa, but also affects domestic pigs, with Trypanosoma simiae notable as a virulent suid pathogen that can rapidly cause death. Trypanosoma simiae is widespread in tsetse-infested regions, but its biology has been little studied compared to T. brucei and T. congolense. METHODS: Trypanosoma simiae procyclics were cultured in vitro and transfected using protocols developed for T. brucei. Genetically modified lines, as well as wild-type trypanosomes, were transmitted through tsetse flies, Glossina pallidipes, to study T. simiae development in the tsetse midgut, proventriculus and proboscis. The development of proventricular trypanosomes was also studied in vitro. Image and mensural data were collected and analysed. RESULTS: A PFR1::YFP line successfully completed development in tsetse, but a YFP::HOP1 line failed to progress beyond midgut infection. Analysis of image and mensural data confirmed that the vector developmental cycles of T. simiae and T. congolense are closely similar, but we also found putative sexual stages in T. simiae, as judged by morphological similarity to these stages in T. brucei. Putative meiotic dividers were abundant among T. simiae trypanosomes in the proboscis, characterised by a large posterior nucleus and two anterior kinetoplasts. Putative gametes and other meiotic intermediates were also identified by characteristic morphology. In vitro development of proventricular forms of T. simiae followed the pattern previously observed for T. congolense: long proventricular trypanosomes rapidly attached to the substrate and shortened markedly before commencing cell division. CONCLUSIONS: To date, T. brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, which occurs in the fly salivary glands. By analogy, sexual stages of T. simiae or T. congolense are predicted to occur in the proboscis, where the corresponding portion of the developmental cycle takes place. While no such stages have been observed in T. congolense, for T. simiae putative sexual stages were abundant in the tsetse proboscis. Although our initial attempt to demonstrate expression of a YFP-tagged, meiosis-specific protein was unsuccessful, the future application of transgenic approaches will facilitate the identification of meiotic stages and hybrids in T. simiae.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Suínos , Gado , Trypanosoma/genética , Tripanossomíase Africana/veterinária , Meiose
13.
PLoS Negl Trop Dis ; 17(7): e0011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498955

RESUMO

Although studies on African Trypanosomiases revealed a variety of trypanosome species in the blood of various animal taxa, animal reservoirs of Trypanosoma brucei gambiense and anatomical niches such as skin have been overlooked in most epidemiological settings. This study aims to update epidemiological data on trypanosome infections in animals from human African trypanosomiasis (HAT) foci of Cameroon. Blood and skin snips were collected from 291 domestic and wild animals. DNA was extracted from blood and skin snips and molecular approaches were used to identify different trypanosomes species. Immunohistochemical analyses were used to confirm trypanosome infections in skin snips. PCR revealed 137 animals (47.1%) with at least one trypanosome species in the blood and/or in the skin. Of these 137 animals, 90 (65.7%) and 32 (23.4%) had trypanosome infections respectively in the blood and skin. Fifteen (10.9%) animals had trypanosome infections in both blood and skin snip. Animals from the Campo HAT focus (55.0%) were significantly (X2 = 17.6; P< 0.0001) more infected than those (29.7%) from Bipindi. Trypanosomes of the subgenus Trypanozoon were present in 27.8% of animals while T. vivax, T. congolense forest type and savannah type were detected in 16.5%, 10.3% and 1.4% of animals respectively. Trypanosoma b. gambiense infections were detected in the blood of 7.6% (22/291) of animals. No T. b. gambiense infection was detected in skin. This study highlights the presence of several trypanosome species in the blood and skin of various wild and domestic animals. Skin appeared as an anatomical reservoir for trypanosomes in animals. Despite methodological limitations, pigs, sheep, goats and wild animals were confirmed as potential reservoirs of T. b. gambiense. These animal reservoirs must be considered for the designing of control strategies that will lead to sustainable elimination of HAT.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Humanos , Animais , Suínos , Ovinos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Camarões/epidemiologia , Prevalência , DNA de Protozoário/genética , DNA de Protozoário/química , Trypanosoma/genética , Trypanosoma brucei gambiense/genética , Animais Selvagens , Cabras , Moscas Tsé-Tsé/genética
14.
Exp Parasitol ; 252: 108589, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516291

RESUMO

African Animal Trypanosomosis (AAT or Nagana) is a vector-borne disease caused by Trypanosomatidae, genus Trypanosoma. The disease is transmitted by the bite of infected hematophagous insects, mainly tsetse flies but also other blood-sucking insects including stomoxes and tabanids. Although many trypanosome species infect animals, the main agents responsible for this disease with a strong socio-economic and veterinary health impact are Trypanosoma congolense (T. congolense or Tc), Trypanosoma vivax (T.vivax), and to a lesser extent, Trypanosoma brucei brucei (T.brucei brucei or Tbb). These parasites mainly infect livestock, including cattle, in sub-Saharan Africa, with major repercussions in terms of animal productivity and poverty for populations which are often already very poor. As there is currently no vaccine, the fight against the disease is primarily based on diagnosis, treatment and vector control. To develop new tools (particularly therapeutic tools) to fight against the disease, we need to know both the biology and the genes involved in the pathogenicity and virulence of the parasites. To date, unlike for Trypanosoma brucei (T.brucei) or Trypanosoma cruzi (T.cruzi), genome editing tools has been relatively little used to study T. congolense. We present an efficient, reproducible and stable CRISPR-Cas9 genome editing system for use in Tc bloodstream forms (Tc-BSF). This plasmid-free system is based on transient expression of Cas9 protein and the use of a ribonucleoprotein formed by the Cas9 and sgRNA complex. This is the first proof of concept of genome editing using CRISPR-Cas9 ribonucleoproteins on Tc-BSF. This adapted protocol enriches the "toolbox" for the functional study of genes of interest in blood forms of the Trypanosoma congolense. This proof of concept is an important step for the scientific community working on the study of trypanosomes and opens up new perspectives for the control of and fight against animal trypanosomosis.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Animais , Bovinos , Trypanosoma congolense/genética , Sistemas CRISPR-Cas , Edição de Genes , Ribonucleoproteínas/genética , RNA Guia de Sistemas CRISPR-Cas , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária , Trypanosoma/genética , Trypanosoma brucei brucei/genética
15.
Res Vet Sci ; 162: 104946, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37467559

RESUMO

Drug-resistant trypanosomes are widespread in sub-Saharan Africa and in conjunction with the drug-sensitive phenotypes cause a serious endemic wasting disease in animals. We evaluated the pathogenicity of single and mixed drug-resistant Trypanosoma brucei brucei and T. congolense isolates in 35 female rats, randomly divided into seven groups (1-7) of five rats. Group 1 was the uninfected control. Groups 2 and 3 were infected with drug-sensitive T. brucei brucei and T. congolense, respectively, whereas groups 4 and 5 were infected with multidrug-resistant T. brucei brucei and T. congolense respectively. Group 6 were infected with drug-sensitive T. brucei brucei and T. congolense while group 7 were infected with multidrug-resistant T. brucei brucei and T. congolense. Parasitaemia kinetics, haematological parameters, body weight, clinical signs, survival time, gross and histopathological changes in the spleen were evaluated. Parasitaemia occurred between day 3-9 post-infection in all the infected groups. Rats in groups 4 and 7 had markedly prolonged (p < 0.05) pre-patent period, days to first peak parasitaemia, survival time, and lower (p < 0.05) parasitaemia level than groups 2 and 6 rats while these parameters were comparable for groups 3 and 5 rats. Anaemia was noted in the infected groups but the severity did not vary amongst the infected groups. Severe clinical signs and splenic lesions were noted in rats infected with drug-sensitive trypanosome species compared to the multidrug-resistant species. Therefore, we conclude that the trypanosome isolates were pathogenic. However, the drug-sensitive T. brucei brucei and mixed drug-sensitive trypanosome infections were more pathogenic than their multidrug-resistant counterparts.


Assuntos
Anemia , Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Ratos , Feminino , Animais , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Virulência , Anemia/veterinária , Parasitemia/veterinária
16.
Parasitol Int ; 96: 102772, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330040

RESUMO

Despite considerable data generated on livestock trypanosomoses in tsetse-infested areas, little attention was paid for animal African trypanosomosis (AAT) in sleeping sickness foci. This study aimed to fill this gap by determining the diversity and prevalence of trypanosome species in animals from three Chadian human African trypanosomosis (HAT) foci. Blood samples were collected from 443 goats, 339 sheep, 228 dogs and 98 pigs of the Mandoul, Maro and Moissala HAT foci in the south of Chad. Capillary tube centrifugation (CTC) and specific primers were used to search trypanosomes. The prevalence of trypanosome infections was 6.3% for CTC and 22.7% for PCR. Trypanosomes of the sub-genus Trypanozoon had the highest prevalence (16.6%) while T. congolense savannah (1.9%) was least prevalent. Significant differences were recorded between the prevalence of trypanosome species (χ2 = 8.34; p = 0.04) and HAT foci (χ2 = 24.86; p ≤0.0001). Maro had the highest prevalence (32.7%) and Mandoul the lowest (17.4%). Significant differences were also recorded for T. congolense forest (χ2 = 45.106; p < 0.0001) and all T. congolense (χ2 = 34.992; p < 0.0001). Goats had the highest prevalence (26.9%) and sheep the lowest one (18.6%). Between animals, significant differences were recorded for trypanosomes of the sub-genus Trypanozoon (χ2 = 9.443; p = 0.024), T. congolense forest (χ2 = 10.476; p = 0.015) and all T. congolense (χ2 = 12.152; p = 0.007). Of the 251 animals carrying trypanosome infections, 88.8% had single infections while 11.2% had more than one trypanosome species. The overall prevalence of single and mixed trypanosome infections were respectively 20.1% and 2.6% in animal taxa of all foci. This study highlighted a diversity of trypanosomes in animal taxa of all HAT foci. It showed that AAT constitutes a threat for animal health and animal breeding in Chadian HAT foci. In these tsetse infested areas, reaching the elimination of AAT requires the designing and the implementation of control measures against trypanosome infections.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Cães , Humanos , Ovinos , Suínos , Chade/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Trypanosoma/genética , Cabras
17.
Med Vet Entomol ; 37(4): 723-736, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37357577

RESUMO

Tsetse flies (Glossina spp.) are major vectors of African trypanosomes, causing either Human or Animal African Trypanosomiasis (HAT or AAT). Several approaches have been developed to control the disease, among which is the anti-vector Sterile Insect Technique. Another approach to anti-vector strategies could consist of controlling the fly's vector competence through hitherto unidentified regulatory factors (genes, proteins, biological pathways, etc.). The present work aims to evaluate the protein abundance in the midgut of wild tsetse flies (Glossina palpalis palpalis) naturally infected by Trypanosoma congolense s.l. Infected and non-infected flies were sampled in two HAT/AAT foci in Southern Cameroon. After dissection, the proteomes from the guts of parasite-infected flies were compared to that of uninfected flies to identify quantitative and/or qualitative changes associated with infection. Among the proteins with increased abundance were fructose-1,6-biphosphatase, membrane trafficking proteins, death proteins (or apoptosis proteins) and SERPINs (inhibitor of serine proteases, enzymes considered as trypanosome virulence factors) that displayed the highest increased abundance. The present study, together with previous proteomic and transcriptomic studies on the secretome of trypanosomes from tsetse fly gut extracts, provides data to be explored in further investigations on, for example, mammal host immunisation or on fly vector competence modification via para-transgenic approaches.


Assuntos
Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Proteômica , Insetos Vetores , Tripanossomíase Africana/veterinária , Mamíferos
18.
PLoS One ; 18(2): e0281180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730273

RESUMO

Trypanocidal resistance is a major cause of treatment failure. This study evaluated the sensitivity of Trypanosoma evansi field isolates collected from Marsabit and Isiolo counties, Kenya. A total of 2,750 camels were screened using parasitological tests for trypanosomes. Of the screened camels, 113 tested positive from which 40 T. evansi isolates were tested using the single dose mice sensitivity test. Five treatment groups each comprising of 6 mice were inoculated intraperitoneally with 1x105 trypanosomes of each isolate and treated 24 hours later with isometamidium chloride at 1 mg/kg, homidium chloride at 1mg/kg, diminazene aceturate at 20 mg/kg and quinapyramine sulphate & chloride at 1 mg/kg. The fifth group was left untreated (positive control). The mice were monitored daily for 60 days. A survey on camel owners' practices that influence development of resistance to trypanocidal drugs was then conducted. Results indicated presence of drug resistance in all the 7 study sites that had infected camels. Seven of the isolates tested were resistant to diminazene aceturate whereas, 28, 33 and 34 were resistant to isometamidium chloride, quinapyramine sulphate & chloride and homidium chloride, respectively. Seven (17.5%) isolates of the 40 tested were sensitive to all 4 drugs, whereas, 7.5%, 10%,55% and 10% were resistant to 1,2,3 and 4 drugs, respectively. The prevalence of multiple drug resistance was 75%. Survey data indicated that camel management practices influenced the prevalence and degree of drug resistance. In conclusion, the multiple drug resistance observed in the two counties may not be an indication of total trypanocidal drug failure. Judicious treatment of confirmed trypanosomiasis cases with correct dosage would still be effective in controlling the disease since the observed resistance was at the population and not clonal level. However, integrated control of the disease and the vectors using available alternative methods is recommended to reduce drug use.


Assuntos
Tripanossomicidas , Trypanosoma , Tripanossomíase Africana , Camundongos , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Camelus , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Quênia , Cloretos/farmacologia , Fenantridinas/farmacologia , Fenantridinas/uso terapêutico , Diminazena/farmacologia , Diminazena/uso terapêutico , Resistência a Medicamentos
19.
Vet Res Commun ; 47(1): 17-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35389159

RESUMO

Trypanotolerance of the West African dwarf (WAD) breeds may not rule out significant pathophysiological changes that may affect productivity. In this study, the effects of infection of WAD rams with Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) on their serum levels of electrolytes [calcium, phosphorus, sodium, potassium]; oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA)]; and sperm parameters [sperm count, motility, vitality, and morphology] were investigated. Fifteen WAD rams, assigned to 3 groups (A, B & C) of 5 rams each, were used for the study. Group A rams were infected with Tbb, while Group B rams were infected with Tc, both intraperitoneally, at the dose of 106 trypanosomes/animal. Group C rams served as the uninfected control. The infections were monitored for 70 days. Serum calcium levels were significantly (p < 0.05) lower in Tbb and Tc infected rams compared to the control throughout the study. Serum sodium was significantly (p < 0.05) higher in the Tb infected rams compared to the Tc infected and control rams on days 14 and 28 PI. Serum SOD activity decreased while MDA levels increased in both infected groups of rams. Tbb infected rams were azoospermic, while Tc infected rams had lower sperm motility, vitality and concentration, and higher number of abnormal sperm cells compared to the control. Necrotic and inflammatory lesions occurred in the testis and epididymis of both infected rams. These results suggest that despite trypanotolerance, trypanosome infections in the WAD rams significantly impact on health and reproduction.


Assuntos
Doenças dos Ovinos , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Masculino , Animais , Ovinos , Tripanossomíase Africana/veterinária , Cálcio , Motilidade dos Espermatozoides , Sêmen , Espermatozoides , Carneiro Doméstico , Oxirredução , Superóxido Dismutase
20.
Acta Trop ; 237: 106721, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257455

RESUMO

African Trypanosomiasis is a debilitating disease in both humans and animals that occurs in sub-Saharan Africa and has a severe negative impact on the livelihood of people in the affected areas. The disease is caused by protozoan parasites of the genus Trypanosoma, which is often described simply as blood-borne; however, a number of studies have shown the parasite inhabits many different environments within the host. Control of the disease involves measures that include the use of trypanocidal drugs to which there are growing number of reported cases of resistance. Here, the patterns of trypanosome DNA presence during a diminazene aceturate treatment round on a cohort of cattle in Adidome, Ghana were assessed. A group of 24 cows were selected irrespective of age and sex and the infecting trypanosome species followed for 18 days before and after treatment with diminazene aceturate in the blood and skin of the animals using a diagnostic nested PCR that targeted the alpha-beta tubulin gene array. Persistence of trypanosome DNA was observed over the period and parasite DNA was readily detected in both the skin and blood, with parasite DNA disappearing and reappearing in both across the study. Moreover, there was limited correlation between the parasite DNA detected in the skin and blood. Overall, the data show the patterns of a natural trypanosome infection during drug treatment. In addition, the diagnostic potential of sampling the skin for African trypanosomiasis is highlighted.


Assuntos
Tripanossomicidas , Trypanosoma , Tripanossomíase Africana , Humanos , Feminino , Bovinos , Animais , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Fazendas , Gana/epidemiologia , Trypanosoma/genética , Diminazena/farmacologia , Diminazena/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Resistência a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...